Mid-Infrared Studies of Galaxies from Space

Dimitra Rigopoulou Univ. of Oxford & RAL-Space

Disclaimer

it is impossible to review x100s Spitzer and ISO papers. Instead I focused on selected MIRspectroscopic studies of galaxies. Apologies if I don't cite your paper!

Why bother with the mid-infrared?

EWASS 2015, Tenerife

Mid-infrared spectroscopy from space : from KAO to ISO to Spitzer, JWST and beyond

Studying Galaxy Evolution in the MIR

Mid Infrared

from A. Contursi

E<13.6

(H)

Dust Grain:

(*====)

Pure rotational H₂ lines

 H_2 rotational transitions in the mid-infrared (excitation energies 5–10 times smaller), probe gas T~ 100–1000 K up to 30% of total H_2 (norm)

PAHs & silicate absorption

PAHs used as diagnostics of SB and AGN Crystalline silicates (forsterite=Mg₂SiO₄ found in 12 ULIRGs)

Fine Structure lines

A host of mid-infrared fine structure lines with a wide variety of ionization potential : [NeII] 12.8 μ m [NeV] 14.3 μ m, [OIV] 25.9 μ m, [SIII] 18 & 32 μ m, [SIII] 34 μ m

H_2 rotational / vibrational lines

 H_2 vibrational transitions in the near-IR arise from gas at T > 1000 K, small fraction (10 ⁻⁶) of total molecular H_2 gas

 H_2 rotational transitions in the mid-infrared (excitation energies 5-10 times smaller), probe gas T[~] 100-1000 K up to 30% of total H_2 (norm)

transition v=0	short notation	rest λ (μ m)	spectral order	${{ m E}_{{f u}}/k}$ (K)	${\rm A} \atop (10^{-11}{\rm s}^{-1})$
J=2-0	S(0)	28.219	LH14	510	2.95
J=3-1	S(1)	17.035	$\mathrm{SH}12$	1015	47.6
J = 4 - 2	S(2)	12.279	${ m SH}17$	1681	275.
J=5-3	S(3)	9.665	SL1	2503	980.
J = 6 - 4	S(4)	8.025	SL1	3473	2640.
J=7-5	S(5)	6.910	SL2	4585	5880.
J=8-6	S(6)	6.109	SL2	5828	11400.
J=9-7	S(7)	5.511	SL2	7196	20000.

^aThe rotational upper level energies were computed from the molecular constants given by Huber & Herzberg (1979) and the transition probabilities are from Black & Dalgarno (1976).

H₂ observations: from ISO to SPITZER

Excitation temperatures & Masses

ULIRGs show 3x more H2 emission than that expected from their SFR. Additional source of heating in shocks? (Hill+14)

EWASS 2015, Tenerife

Spatially resolved H_2 measurments in LIRGs

Pereira-Santaella et al. 2010

Broad agreement between spatial extent of H2 and PAHs: Common origin (in PDRs?) What about shocks?

GOALS sample, Stierwalt +14

ULIRGs

Mid-infrared spectroscopy: from ISO to Spitzer

Refined diagnostic plots

Penetrating through the obscuring material

EWASS 2015, Tenerife

IRASF00183-7111: strong abs bands, water-ice, hydrocarbons (Spoon 2004)

•Large variation in MIR spectra driven by PAH, H₂O ice, hydrocarbon & silicate absorption

• 30–40% of the power of a typical ULIRG comes from an AGN. This rises with luminosity, dust temp, merger stage, etc.

Spoon +(2007), Armus +(2006,2007), Desai +(2007), Hao +(2007), Imanishi +(2007), Schweitzer +(2008), Lutz +(2008), Veilleux +(2009)

AGN contribution increases with increasing LIR

•30-40% of the power of a typical ULIRG comes from an AGN. This rises with luminosity, dust temp, merger stage, etc.

 detection of SB signatures (PAH + cold dust) in QSOs strengthened evidence for rapid BH and bulge growth in dusty, merging galaxies.

Veilleux +2009

The Starburst – AGN connection

The mid-IR SED is composed of two main components:

<u>Starburst</u>: 2 Polycyclic aromatic hydrocarbons (PAH) emission lines + extinction Main lines at 6.2, 7.7, 8.6 and 11.3µm

2. <u>AGN</u>: power-law + extinction

Weedman et al. 2006

Bernard-Salas +09

The Starburst – AGN connection: spectral decomposition

Mid-IR lines as probes of the central AGN

Ho et al. 07, Dasyra et al 08

Relation between M(BH) and the velocity dispersion using [NeV] and [OIV] for dusty AGN

MIR spectra of high redshift galaxies

MIR colours effective in selecting z>1 galaxies

At z^2 , 24 µm rest-frame 8 µm (PAHs) Samples selected based on different colour cuts but in most cases including 24 µm and being faint in the optical (Yan +07, Weedman+06, Hernan-Caballero+09)

Alternatively, selection based on the 1.6 µm bump and IRAC colours (e.g Huang et al 09, Lonsdale et al, Farrah et al)

Spectroscopy of z~1 galaxies : PAHs and FS lines

Brand+08, $\overline{0.5 < z < 1}$, L_{IR} ~ 0.1-2 x 10¹² L_{\odot} , high L_{PAH} , low vfv (70)/ vfv(24) AGN? Also, Weedman+06 Yan+05,09

24 μm selection criteria seems to pick out z~1 systems with sizeable AGN contribution

35

z^2 spectra of galaxies selected based on 24/8µm ratio

A large sample of 50+ galaxies based on 24/8 ratio and faint

R magnitudes.

33% strong PAH SB dominated

33% deep silicate absorption deeply embedded sources

34% weak PAH, steep continuum most likely AGN dominated

Dust enshrouded z^2 galaxies with $L_{bol} \sim L_{bol}$ quasar

An alternative way to select z>1.5 galaxies based on IRAC colours

Stacked spectrum of the 19 z~2 SBs is similar to that of local ULIRG HII and local ULIRG LINER.

Colour selection based on IRAC colour indices picks Mostly SB-dominated ULIRGs In narrow z-range z~<1.95>

Huang+ 2009, S24>0.6 mJy Fang +2014, S24>0.11 mJy

IRAC colour selection picks massive (M>10¹¹ M_{\odot}) systems

Small fraction of AGN: Less than 20% IRAC colour selection effective in picking out massive SBs in narrow z-range

EWASS 2015, Tenerife

Fang+14 Pope+08

SMG Spectra: Polycyclic aromatic hydrocarbons (PAH) + extinction

Mid-IR SED of SMGs is starburst dominated : small contribution from AGN (<30% at these wavelengths) Scaled up M82 – not

like local ULIRGs (e.g. Arp220)

See also Valiante et al. 2007, Menendez-Delmestre et al. 2009

z=2 SMG's have similar
 PAH/LIR as local starbursts

 SMG's have lower silicate optical depths than local ULIRGs.

•Majority of bright 24 μ m (S>0.5 mJy) 1 < z < 3 sources are AGN dominated, but by pushing fainter, selecting on IR color, or FIR excess, extremely powerful SB are found.

 SMGs look a lot more like low-luminosity SB galaxies than low-z ULIRGs. Strong PAH, low tau - consistent with large sizes estimated from radio, CO

 High-luminosity, high-z SB are not mostly late-stage mergers (like they are at low-z).

JWST MIRI : a new MIR window into the Universe

http://www.roe.ac.uk/ukatc/consortium/miri/index.html

MIRI imaging sensitivity

Imager Filter		Point source sensitivity (10 sigma in 10,000 sec) [micro- Jansky]				
Wavelength [µm]	Passband [µm]	Requirement (FRD)	Design CBE	Margin		
5.6	1.2	0.18	0.13	28%		
7.7	2.2	0.27	0.22	19%		
10.0	2.0	0.70	0.54	23%		
11.3	0.7	1.66	1.33	20%		
12.8	2.4	1.33	0.99	26%		
15.0	3.0	1.77	1.28	28%		
18.0	3.0	4.32	3.18	26%		
21.0	5.0	8.63	7.13	17%		
25.5	4.0	28.3	28.3	0%		

http://www.roe.ac.uk/ukatc/consortium/miri/index.html

MIRI spectroscopic capabilities

1	2	3	4
21	17	16	12
5.5 - 7.7	7.7 – 11.9	11.9 - 18.3	18.3 - 28.3
0.176 0.196	0.277 0.196	0.387 0.245	0.645 0.273
3x 3.87	3.5x 4.42	5.2x 6.19	6.7x 7.73
2400 - 3700	2400 - 3600	2400 - 3600	2000 - 2400
	1 21 5.5 – 7.7 0.176 0.196 3x 3.87 2400 - 3700	1 2 21 17 5.5 - 7.7 7.7 - 11.9 0.176 0.277 0.196 0.196 3x 3.87 3.5x 4.42 2400 - 3700 2400 - 3600	$\begin{array}{c cccc} 1 & 2 & 3 \\ 21 & 17 & 16 \\ \hline 5.5 - 7.7 & 7.7 - 11.9 & 11.9 - 18.3 \\ \hline 0.176 & 0.277 & 0.387 \\ 0.196 & 0.196 & 0.245 \\ \hline 3x 3.87 & 3.5x 4.42 & 5.2x 6.19 \\ \hline 2400 - & 2400 - & 2400 - \\ 3700 & 3600 & 3600 \\ \hline \end{array}$

http://www.roe.ac.uk/ukatc/consortium/miri/index.html

MIRI spectroscopy sensitivity

Science highlights with MIRI

IFS studies of high-z starbursts down to Kpc scales

Probing the ISM: Red-shifted near-IR spectra

What is next: SPICA JAXA + ESA Cosmic Vision

2.5m class telescope Cooled to < 8K

- FIR grating spectrometer R~300 (+ FP R~3000)
 galaxy evolution, star formation
 Japan:
- MIR 5' x 5' imaging (R~50) spectro-photometer
- MIR Medium Resolution long slit Spectrometer (R~1000) 20< λ <37 μ m
- MIR High Resolution Spectrometer (R>25000) 12< λ <18 μ m

The power of IR spectroscopy to disentagle star formation and accretion

Current baseline

- Orbit: S-E L2 Halo orbit
- Launcher: H-X Vehicle of JAXA
- Focal plane instruments SAFARI (34 - 230µm) SMI (17 - 37µm) + HRS (12 - 18µm) SPEChO (5 -20µm) (under consideration)
- Schedule

In JAXA SPICA is now in the redefinition phase and will go to the M-class competition in ESA

2015 June International preview by JAXA
2015 Sept Mission Definition Review by JAXA
2016 ESA M5 proposal submission
2027-2028 Launch (>3 year operation: goal >5 years)

Thank you!