THE FUTURE OF GROUND-BASED EXTRAGALACTIC MID-IR ASTRONOMY – OR EXTRAGALACTIC SCIENCE WITH MET'S ON THE E-ELT

- 1. Introduction
- 2. Angular Resolution
- 3. Point-source Sensitivity
- 4. Point Sources and extended Sources
- 5. METIS extragalactic Science

Bernhard Brandl, Leiden University & TU Delft

Emeric Le Floc'h, Sascha Quanz, Walter Jaffe, Paul van der Werf, Maarten Baes, Helmut Dannerbauer, Rubina Kotak, Roy van Boekel

I. INTRODUCTION

55.11

...one of the first three science instruments on the E-ELT

METIS will include the following observing capabilities:

- Imaging at 3 19 μm. The imager shall include low/medium resolution slit spectroscopy as well as coronagraphy for high contrast imaging.
- High resolution (R ~ 100,000) IFU spectroscopy at 3 5 μm, including a mode with extended instantaneous wavelength coverage.
- All observing modes work at the diffraction limit with single conjugate (SC) and eventually assisted by a laser tomography adaptive optics (LTAO) system.

νετίς E-ELT/METIS⇔VLT Instr.

Main Science Areas

Formation **History of our** Solar System

METIS

Extragalactic

(this talk)

Galactic Center

β Pic b

Proto-planetary Disks

Exoplanets

ΜΕΤΙS AO – but no LGS@1st Light

METIS has two flavors of Adaptive Optics:
A. SCAO: internal WFS & E-ELT M4/5 → large fraction of

Galactic science

B. LTAO: laser guide stars → extragalactic science & faint Galactic targets

II. ANGULAR RESOLUTION

55.11

Μετίs E-ELT Resolution ("local")

Μετίs E-ELT Resolution (high z)

III. POINT SOURCE SENSITIVITIES

55.H

Thermal background is orders of magnitude stronger than most astronomical sources – even a very bright star like Vega (Oth mag)

The best we can do is to get to the photon shot noise limit = $\sqrt{(n_{\gamma})}$

3

2000 M_o/yr

100 M_o/yr

10 M_o/yr

 $H_{\alpha} \rightarrow L$ -band

4

5

Μετίs Spectroscopic Sensitivity

IV. POINT SOURCES AND EXTENDED SOURCES

SS.H

Point Sources

How does the Signal-to-Noise scale?

• Effect of <u>telescope aperture</u>:

 $S \propto D^2$ and $B \propto D^2 \rightarrow N \propto D \rightarrow S/N \propto D$

Signal = S; Background = B; Noise = N; Telescope diameter = D

• Effect of <u>pixel FOV</u> (if Nyquist sampled):

 $S \propto const$ and $B \propto D^{-2} \rightarrow N \propto D^{-1} \rightarrow S/N \propto D$

Both telescope and pixel sizes combined: $S/N \propto D^2 \rightarrow t_{int} \propto D^{-4}$

Background (=noise) Star

Extended Sources

JETIS

Background (=noise) Galaxy

Signal = S; Background = B; Noise = N; Telescope diameter = D

• Effect of <u>telescope aperture</u>:

 $S \propto D^2$ and $B \propto D^2 \rightarrow N \propto D \rightarrow S/N \propto D$

• Effect of <u>pixel FOV</u> (if Nyquist sampled):

 $S \propto D^{-2}$ and $B \propto D^{-2} \rightarrow N \propto D^{-1} \rightarrow S/N \propto D^{-1}$

Both telescope and pixel sizes combined:

 $S/N \propto const(D) \rightarrow t_{int} \propto const(D)$

Sensitivity per pixel on an ELT is the same as for a 4m tel.
→ insensitive to low surface brightness
→ need compact sources.

Resampling would gain sensitivity by \sqrt{n} but is usually not an option if angular resolution is the driver for an ELT.

Μετίs Instrument Simulator

End-to-end science simulations are *essential* to assess the feasibility of observations of resolved objects. $t_{int} = 1 \text{ min}; \text{ star } \sim 10 \text{ mJy}; \text{ nebula } \sim 50 \text{ mJy} @ 4 \mu \text{ m}$

L M N Q

V. EXTRAGALACTIC SCIENCE

Science examples:
1) Transients
2) Active Galactic Nuclei
3) Super Star Clusters
4) IR-luminous Galaxies at high-z

Μετίs Focus on *unique* Science

- Strong competitors will be in operation
- Only one ELT for the entire European astronomical community

ΜετisTransients – Key Questions

- How does the physics of the explosion work?
 - wealth of optically thin spectral diagnostics explosion models
- currently only 5 objects with mid-IR spectra 2005df [Co III] 3.5 Dec 2005 (t~135 d) Gerardy et al. (2007) Are core-collapse supernovae the 2.5 + [s iv] F, (mJy) primary sources of dust in the [Ar II] [Ar III] ြ ျ early Universe? 1.5 Ξ ź 1 - follow the condensation of dust grains 0.5 11 12 13 10 14 15 Wavelength (µm)
- What are the properties of the progenitors of the first SNe explosions?

Μετis Transients – Observations

- Requires quick response times of a few minutes
- METIS needed for SNe in particularly crowded regions or close to the nuclei of their host galaxies
 ^{3.6 µm} Kotak et al. (2
- Follow cooling of the ejecta → grain growth

requires monitoring over several years
re-brightening due to collision between
supernova ejecta and pre-existing material

- Beyond z=4, trusted rest-frame optical line-diagnostics shift into METIS window

 Spectroscopic follow-up of high-z SNe and GRBs, and the nature of their host galaxies
 - Study of intervening intergalactic medium

METIS AGN – Key Questions

- What is the physical nature of the accreting dust systems that surround AGN at ~1 pc radius?
 - dust not collapsed into thin disk, not perpendicular to radio axes
 - origin of warm dust *along* the radio axis (Sy I ⇔ Sy II)
 - unusually low gas/dust ratio
- How is the energy fed back from AGN inner region to the surrounding galaxy?

 radio jets <> wind induced shocks
- How do the uncertainties in BLR structures affect black hole mass estimates?

– accurate spatial and reverberation measurements \rightarrow kinematics \rightarrow BH masses

- Where do the huge amounts of dusty material come from?
 from circum-nuclear star clusters, 100 pc away?
 - inflow \rightarrow angular momentum dump (star formation \Leftrightarrow turbulence)?

- Nearby Sy galaxies are relatively bright, $F_v \approx 0.1 5$ Jy
- Well resolved: warm dust regions ≈ 0.03"; circum-nuclear stellar disks 10× larger
- MIDI & MATISSE ≤ 20 objects

 limited by sensitivity → METIS

Velocity profiles of the [Si IX] \rightarrow kinematics

- What are the processes which form the most massive super star clusters?
 - $-M > 10^{6-7} M_{o}$
 - ages \leq 10 Myr
 - $-L \approx 10^{8-10} L_{o}$
 - $-A_V \approx 5 20$ mag
- Where did they form wrt galactic inflows, bars, resonances, ...?
- What does the spatially resolved SF history tell us?
 continuous or episodic? Feedback?
- What is their role in galactic scale "super winds"?

• Imaging and spectroscopy \rightarrow local conditions (T, ρ , lines: EWs and shapes) \rightarrow relative ages, masses, environments

- METIS will have 5× better resolution → access to hundreds of "starburst nuclei" ≤ 100 Mpc
- Systematic studies @ LMN band, PAH, Br-α, [Ne II], ...

Μετίs SSCs in Galaxy Mergers

- Simulation of merger @ N-band by Renaud et al. (2014)
- Left: D (20 Mpc) and total F_v (2 Jy) of the Antennae galaxies
- <u>Right</u>: object moved to D = 220 Mpc (z = 0.05)

- Did disk instabilities or mergers drive the stellar growth?
 requires ionized gas (Hα) kinematics)
- How important is stellar feedback?

 compare velocity dispersions: ionized gas ⇔ cold gas ← ALMA

- Follow-up of strongly-lensed, dusty SF galaxies

 Herschel/Planck: 5 sources / deg²
- Constrain morphology and stellar mass distribution down to 100 pc scale,
 - uses trusted rest-frame optical line-diagnostics shift into METIS window

Simulation based on real system: Two ellipticals @ z=1 & a lensed sub-mm galaxy @ z = 3.3

Source Follow-ups

GAIA

METIS

10 years from now, our catalogs will be full of peculiar sources for follow-up studies.

METIS

THE END OF MY TOPK IS JUST THE BEGINNING

5

