Signposts of Co-evolution at high z: properties of Submm-bright QSOs z ~2

Anuar Khan Alí, Francisco J. Carrera, Silvia Mateos (IFCA, CSIC-UC, Spain)

Mathew J. Page, Myrto Symeonidis (MSSL-UCL, UK) Jason Stevens, José Manuel Cao Orjales (CAR, U. Hertfordshire, UK)

EWASS 2015, Tenerife, 22-26 de Junio de 2015

Instituto de Física de Cantabria

Introduction: our hard QSO sample (Page+01,04, Stevens+04,05)

- Sample of (Broad Line) QSO1 with X-ray absorbed spectra
 - Matched sample of similar (L_{χ},z) unabsorbed QSO control sample
- X-ray-absorbed QSO1 are ~10-15% of QSO1 population
- Strong difference in submm fluxes:
 - Absorbed mostly bright, unabsorbed mostly faint
 - All submm detected are at z>1.5
 - Submm much too bright to come from RQ AGN: strong star formation

Introduction: our hard QSO sample (Page+01,04, Stevens+04,05)

- Sample of (Broad Line) QSO1 with X-ray absorbed spectra
 Matched sample of similar (L_x,z) unabsorbed QSO
- X-ray-absorbed QSO1 are ~10-15% of QSO1 population
- Strong difference in submm fluxes:
 - Absorbed mostly bright, unabsorbed mostly faint
 - All submm detected are at z>1.5
 - Submm much too bright to come from RQ AGN: strong star formation

5 objects:

- Simultaneous strong growth of BH and star formation.
- Stronger SF in the past.
- Transitory phase ~10-15% QSO life.

Our data

- SCUBA 450 and 800µm.
- Herschel: PACS (100, 160µm) and SPIRE (250, 350, 500µm).
- **Spitzer:** IRAC 4.5, 8µm and MIPS 24µm.
- Own optical/NIR (R, I Z, **J, H, K** filters).
- X-ray and UV spectra.
- Public data: **WISE**, 2MASS, SuperCosmos, Sloan.

(Khan-Alí et al. 2015)

QSO SEDs: Aim: contribution of diff. components to SED

- Really strong star formation (SF)?
- Apparent covering factor CF ~ $L_{\text{Torus}}/L_{\text{BOL}}$
- M_{BH}, acc. rate...

(Khan-Alí et al. in prep)

SMG SEDs: Association with the central QSO?

- Photometric redshifts
- Star formation ?

QSO SEDS (Khan-Alíet al. 2015)

Fit to 0.1215-330 μ m rest-frame vL_v using:

- Disk component: Rowan-Robinson+08 SWIRE newagn4
- Torus component: Rowan-Robinson+08 SWIRE dusttor, Roseboom+12 (sub-sample of 3 clumply Torus from Nenkova+08):
- SF component: Siebermorgen & Krügel 2007 (Starburst templates)

RXJ0057: $L_{\text{Disk}} = 1.25 \times 10^{13} L_{\text{sun}} L_{\text{Torus}} = 1.90 \times 10^{13} L_{\text{sun}} L_{\text{FIR}} = 4.9 \times 10^{12} L_{\text{sun}}$

RXJ0941: $L_{\text{Disk}} = 1.00 \times 10^{13} L_{\text{sun}}$ $L_{\text{Torus}} = 1.50 \times 10^{13} L_{\text{sun}}$ $L_{\text{FIR}} = 7.8 \times 10^{12} L_{\text{sun}}$

RXJ1218: $L_{\text{Disk}} = 4.2 \times 10^{12} L_{\text{sun}} L_{\text{Torus}} = 2.5 \times 10^{12} L_{\text{sun}} L_{\text{FIR}} = 6.3 \times 10^{12} L_{\text{sun}}$

RXJ1249: $L_{\text{Disk}} = 1.23 \times 10^{14} L_{\text{sun}} L_{\text{Torus}} = 1.16 \times 10^{14} L_{\text{sun}} L_{\text{FIR}} = 7.0 \times 10^{12} L_{\text{sun}}$

RXJ1633: $L_{\text{Disk}} = 6.50 \times 10^{12} L_{\text{sun}}$ $L_{\text{Torus}} = 7.00 \times 10^{12} L_{\text{sun}}$ $L_{\text{FIR}} = 2.2 \times 10^{12} L_{\text{sun}}$

Results from the fits (Khan-Alíet al. 2015)

- L_{BOL} is calculated using L_x and L_{Disk} (100 Kev 100 μ m).
- Apparent covering factors $L_{Torus}/L_{BOL} \sim (0.32-0.87)$.

Field	L _{X,2-10} (10 ¹¹ L _{SUN})	SFR (M _{SUN} Years ⁻¹)	L _{BOL} (10 ¹¹ L _{SUN})	L _{IR} (10 ¹¹ L _{SUN})
RXJ0057	2.93	840 ± 170	250 ± 30	170 ± 40
RXJ0941	0.93	1350 ± 190	169 ± 13	180 ± 30
RXJ1218	2.33	1090 ± 100	78±7	90 ± 19
RXJ1249	3.69	1200 ± 300	1890 ± 90	780 ± 90
RXJ1633	5.85	380 ± 90	186 ± 15	90 ± 30

Results from the fits (Khan-Alíet al. 2015)

- L_{BOL} is calculated using L_x and L_{Disk} (100 Kev 100 μ m).
- Apparent covering factors I_{-} / $I_{--} \sim (0.32-0.87)$
- Strong star formation
- ULIRG / HLIRG level (L_{IR})
- Very High LBOL (RX J1249)

RXJ0941	0.93	1350 ± 190	169 ± 13	180 ± 30
RXJ1218	2.33	1090 ± 100	78±7	90 ± 19
RXJ1249	3.69	1200 ± 300	1890 ± 90	780 ± 90
RXJ1633	5.85	380 ± 90	186 ± 15	90 ± 30

Black hole Masses

Black hole Masses

Super Massive Black Holes: 10⁹-10¹⁰ M_{SUN}

 λ (A)

AGN: co-evolution

- SMBH (close to the maximum) and high SFR.
- Marconi & Hunt (2003) local relation: $M_{BULGE} = 10^{2.63} M_{BH}$
- Their growth is a transitory phase (peak of activity $z \sim 2$).
- Look-back time \sim 10-11 Gy.
- Starburst time required to reach $M_{BULGE,max} \sim 6-22 \text{ Gy}$

The galaxies have to be already formed and they have to be very massive.

Present and future work (Khan-Alí et al. in prep)

• We are studying the fields around the central QSO to find an association between these objects and the QSO.

Central QSO z = 1.74

Present and future work

sed_507b.qdp

$$1\sigma \rightarrow 1.493 < z < 2.080$$

(Khan-Alí et al. in prep)

- Candidates of a link with the central QSO.
- Confussion ?
- Need spectroscopy and ALMA data.

Summary

- 5 **X-ray-obscured QSOs** at z~2.
- Rest-frame UV-FIR QSO **SED** and their **best-fits**.
- We do not know the masses of their host galaxies, but their BH masses and their high SFR lead us to conclude that they are already very massive.
- We are working to get SMG with **an association** with the **central QSOs**.
- We have found some **good candidates** with **a photo z compatible** with the central **QSO**.
- We **need spectroscopy** and/or **ALMA** data for these candidates.

